
EPL Syntax

EPL (EUCIP Programming Language) is designed to accomodate the need to test basic understanding of
programming at the EUCIP core level. It is based on a subset of C, and is consistent with core programming
constructs found in contemporary programming languages such as Java and C++. The main elements that
have been removed from the original C syntax are:

“Shorthand” assignment operators such as += and &=.
Only simple identfiers (char, int and float) have been retained.
All sc specifiers (e.g. auto, static) have been removed.
All syntax pertaining to structures has been removed
“Non-procedural” statements (e.g. goto, case and switch) have been removed.
All pre-processor statements have been removed

It is believed that even with this simplified syntax most of the core aspects of programming related to
algorithmic understanding, syntactic understanding and the flavour of contemporary programming have
been retained.

It is expected that candidates to the core level “Build” module will be able to understand and answer
questions that utilize EPL. Candidates are permitted to have a reference copy of the syntatx when
undergoing testing.

The EPL syntax is formally defined in the following paragraphs:

1 Expressions

expression:
primary
- expression
! expression
expression binop expression
lvalue = expression
expression , expression

primary:
identifier
constant
 (expression)
primary (expression- listopt)
primary [expression]

lvalue:
identifier
primary [expression]
(lvalue)

The primary-expression operators

() []

have highest priority and group left-to-right. The unary operators

binop:
* /
+ -
< > <= >=
== !=
&&
||

Assignment operator (=) groups right-to-left.

The comma operator (,) has the lowest priority, and groups left-to-right.

2 Declarations

declaration:
decl-specifiers init-declarator- listopt;

decl-specifiers:
type-specifier decl-specifiersopt

type-specifier:
char
int
float
typedef-name

init-declarator-list:
init-declarator
init-declarator , init-declarator- list

init-declarator:
declarator initializeropt

declarator:
identifier
(declarator)
declarator ()
declarator [constant-expressionopt]

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer- list , initializer-list
{ initializer-list }

3 Statements

compound-statement:
{declaration-listopt statement-listopt }

if (expression) statement else statement
while (expression) statement
do statement while (expression);
for (expression-1opt ; expression-2opt ; expression-3opt) statement
return ;
return expression ;
;

4 External definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieropt function-declarator function-body

function-declarator:
declarator (parameter- list opt)

parameter-list:
identifier
identifier , parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-list opt statement-list }

data-definition:
type-specifier opt, init-declarator-list opt ;
type-specifier opt init-declarator-list opt ;

5 Input/Output Standard for EPL

printf (“message”, variables list)

readf (variables list)

